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An Electromagnetic Time-Harmonic
Analysis of Shielded Microstrip Circuits
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Abstract — A Galerkin analysis of microstrip circuits of arbitrary plauar

geomehy enclosed in a rectangular conducting box is described. The

technique entails a time-harmonic electromagnetic analysis evaluating all

fields and surface currents. This analysis is suitable for the accurate
verification of microstrip designs prior to fabrication.

A computer program implementing the analysis has been written in

Pascaf on a persomd compnter. Agreement with measurements of severaf

microstrip strnctores suggests a high degree of accuracy.

I. INTRODUCTION

T HIS PAPER DESCRIBES an electromagnetic analy-

sis of arbitrary microstrip (i.e., planar) circuits con-

tained in a rectangular conducting box. The analysis pro-

ceeds by subdividing the microstrip circuit metallization

into small rectangular subsections. An explicit surface

current distribution is assumed to exist in each subsection.

We evaluate the tangential electric fields due to the current

in each subsection and then adjust the magnitude of the

current in all subsections such that the weighted residual

of the total tangential electric field goes to zero on all

metallization. All surface currents are determined and the

problem is solved. The N-port circuit parameters follow

immediately.

The assumed surface current distribution in a subsection

is called an expansion function. With the integral of the

resulting electric field weighted by the same function, we

have a special case of the method of moments known as a

Galerkin technique [2], [3]. The magnitude of the current

in each subsection is “adjusted” by matrix inversion.

The fields due to current in an individual subsection are

represented by a sum of homogeneous rectangular wave-

guide modes. Thus, this technique is closely related to the

spectral domain approach [7]. The technique described

here [4]–[6] was originally developed as an extension of an

analysis of planar waveguide probes described in section

8-11 of [1].
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Fig. L The microstrip circuit is completely contained in a shielding,

conducting rectangular box. The coordinate system is oriented so as to

emphasize the fact that the fields are represented as a sum of homoge-

neous rectangular waveguide modes with the waveguide tube aIong the
z axis.

II. METHOD OF ANALYSIS

The rectangular conducting box is treated as two sep-

arate waveguides joined at z = h (Fig. 1) with the indi-

cated regions and dielectric constants. Note that region O

is usually but not necessarily restricted to free space. The

tangential (or transverse to z) fields in a given region due

to current on a single subsection is expressed as a sum of

homogeneous waveguide modes. Expressions for the

tangential fields are written as a weighted sum of these

modes:
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where V# is the modal coefficient (amplitude) of the i th

mode, and 1( is the admittance of the i th (m, n) mode as

follows:

ylTE = jK:/(qll) ~lTM = jacl/K~Z

xOTE= – J@/(we) ~OTM = – jNto/K,~

~ G_TT-.
K,;=– K2–.-K2_K2 Kll=+ K2–K2–K2

Note that the modaI admittances are the admittances of

the standing wave modes rather than those of the usual

traveling wave modes (they differ by the constant j), The

e, and ii, are the orthonormal mode vectors which form a

basis for the expansion of the fields in each region. Note

that the m = O, n = O mode need not be included as all

current is transverse to the z direction [8], [9]. For rectan-

gular waveguide. we have

e~E(x, y) = N1gluX – N2g2uY

e~M(x, y) = N2gIUx + ~lg2uy

lij=uZXe, e,=–uZXh
1

where

a=cos(K.x)sin(Kyy)

g2=sin(K.x)cos(KyY).
The IVl and N2 are normalizing constants dependent on

the mode numbers and waveguide dimensions. If a differ-

ent geometry is selected for the waveguide shield, only the

above mode vectors need be changed.

Given a specific current distribution on the surface of

the substrate, we must determine the modal coefficients,

the ~, of the field generated by that surface current. This

is accomplished by setting the discontinuity in magnetic

field equal to the assumed surface current. Then, using the

orthogonality of the modal vectors, we may determine the

~ of the field generated by the current

~=~Octn[K~(c -h)] -Zlctn(K},~)

2,=1/$.

The admittance ~ is the parallel connection of the

admittances of the two shorting planes at z = O and z = c

transformed back to the substrate su~face z = h. Mul-

tilayered geometries need only modify ~.

Substitution of ~ into (1) yields the tangential fields

everywhere in the waveguide. Specialization of ~ to a

delta function for < provides the Green’s function in the

“spatial” domain for current on the surface of the sub-

strate. The Green’s function is a cosine and sine series in

two dimensions with the coefficients of the series repre-
senting the Green’s function in the “spectral” domain.

Evaluation of the ~ requires the evaluation of surface

integrals of the current distribution dotted with a mode

vector. We use the “rooftop” distribution [10], which is

separable with respect to x and y. One component of

Fig. 2. The product of a triangle function in one direction by a rectan-
gle function in the lateraf direction gives a rooftop function which will

be used as an expansion function.

Fig. 3. Two rooftop functions placed on overlapping rectangles give a

piecewise linear approximation to the current in the direction of

current ffow. Additional rooftop functions placed side by side will

provide a step approximation to the surface current in the direction

lateraf to current flow.

t l----.x----l

Fig. 4. The rectangular pulse function is used to represent the current

density on a subsection in the directionlateraf to current flow.

current, either x or y, is evaluated a! a time. The distribu-

tion has a triangle function dependence in the direction of

current flow and a rectangle function dependence in the

lateral direction. This is shown in Fi:g. 2, where the rectan-

gular base of the three-dimensional figure represents the

rectangular subsection, and the height above the base is

proportional to current density. Fig. 3 shows how several

rooftop functions can be placed oIn overlapping subsec-

tions to provide a piecewise linear approximation to the

current in the direction of current flow and a step ap-

proximation in the lateral direction.

Since the rooftop function is sepiu-able, the integral for

~ reduces to the product of two one-dimensional in-

tegrals. The simplest integral to evaluate is the integral

involving the rectangle function, Fig. 4. We require the

evaluation of

FC= jj(x)COS(KX) dX
J

and F, = ~(x) sin(Kx) dx.

The constant K is the wavenumber corresponding to the

variable of integration, for example, h4n/a. Evaluation of

the integrals yields

F<= ~ sin(KAx/2) cos (KxO), K+O

F,= ~ sin(KAx/2) sin(KxO), K#O

FC= Ax and F, =0, K=O.
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Fig. 5. The triangular pulse function represents the current density on a
subsection in the direction of current flow. Thus, no line charges are

generated.

Note that the term which depends on the subsection

dimensions is the same for both cases. We refer to that

term as G(Ax). The integrand may be a function of y, in

which case we have G ( A y ). For the rectangular pulse, we

have

G(Ax)=~sin(KAx/2), K#O

=Ax, K=O.

We use FC, F,, G( Ax), and ~(x) as a generic notation.

The functions which they represent depend on the pulse

being considered. For the triangle function, Fig. 5, we have

FC=G(AX)COS(KXO) and ~= G(Ax)sin(KxO)

with

G(Ax) = &(l-cos(KAx)), K#O

= Ax, K=O.

Thus, to evaluate the integral for ~ we need only evaluate

the ith modal vector at the midpoint of the subsection and

multiply by the appropriate G(Ax) and G(Ay).

In the following equations, $(x) denotes a pulse func-

tion which is a function of x, and j(y) denotes a pulse

function which is a function of y. G(Ax) is the constant,

derived above, which is obtained when ~(.x) is multiplied

by a sine or cosine and integrated over the domain of

~(x). The same holds for G(Ay). We indicate distinct

~(x) and G(Ax) functions by subscripts. Quantities relat-

ing to a source subsection are indicated by a prime.

Quantities relating to a field subsection remain unprimed.
A primed modal function indicates that the modal vector

is to be evaluated at the center of the source subsection,

e.g., g< = gl(xo, .?JO). An unprimed modal function is to be
evaluated at the field point (or center of the field subsec-

tion).

In general, we consider a current distribution of the

form ~ = YX.l(x)~z(y)uX + ~,~3(x)~d(y)uY. The pulse

functions fl and f4 are triangle functions while fz and f3

are rectangle functions. Other functions could be used [4].

The pulse functions are centered on the subsection under

consideration. Calculation of the ~ and substitution into

(1) to calculate the tangential electric field at the substrate

surface yield

EX = ~ [– G<(Ax)Gj(Ay)g~g@ ;&+ iv;~::)]~x
m,n

+ [G\(Ax)G@)NlN2gig@ ~%- &)]JY

E,= ~ [G~(Ax)G~(Ay)NINzg{g~(~:;– 2;Y)]JX
m,n

+ [ – G~(Ax)G~(Ay)gJg@~;; + N@;~)] JY.

(2)

This equation is similar to (18) in [7], illustrating the

similarity between this technique and the spectral-domain

approach.

For a Galerkin implementation, we need the integral of

the electric field weighted by a rooftop function, say

f1(x)f2(y), at a field subsection. This integration is ef-
fected by multiplying each term in the summation by

Gl(Ax)G2(Ay). These weighted integrals (reactions) of the

electric field are also used in the evaluation of the N-port

circuit parameters.

A. Implementation of the Galerkin Solution

The technique is implemented by subdividing the

metallization into small, overlapping rectangles. We need

two sets of rectangles, one for x-directed and a second for

y-directed current. The centers of the two sets of subset.
tlons need to be offset with respect to each other; other-

wise the microstrip edges will not properly align. More

importantly, a subsection of x-directed current cannot

induce current in a collocated y-directed subsection. This

situation gives incorrect results.

Both problems are solved by offsetting one set of sub-

sections as in [10]. The current densities on the subsections

form a set of dependent variables in a system of equations.

The weighted integrals of the electric field on the subsec-

tions form a set of independent variables related to the

dependent variables by an impedance matrix whose ele-

ments are calculated above. Select one (or more) subsec-

tions as a source; set the integral of the electric field on

that subsection equal to one and all the others to zero

(zero tangential electric field on a conductor). Matrix

inversion provides the solution. Techniques for the effi-

cient calculation of the matrix elements have been devel-

oped [4], [5].

B. The Source Model

Microstrip circuit inputs and outputs are usually taken

at the edge of the substrate by means of a coaxial cable

penetrating the shielding sidewall at z = h. The coax shield

is connected to the microstrip shield, and the coax center

conductor is attached to a microstrip conductor.

The coax aperture can be modeled by a conductor-

backed circulating magnetic current. We assume that the

aperture is small and that the aperture current has negligi-

ble effect. When we compare measured data with calcu-

lated data [4], [6], we find that the contribution from the

aperture field is important and that it can be modeled as a

small fringing capacitance in shunt with the connector.
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We model the current injected by the coax center con-

ductor as a subsection of current directed perpendicularly

to the sidewall and centered on the sidewall. The port

subsection uses the same roof-top current distribution.

This facilitates the transition from the port subsection to

microstrip subsections. In the analysis, we set the tangen-

tial electric field to a constant value on all port subsections

and to zero on all other subsections.

C. Evaluation of Input Admittance

We initially discuss the input admittance of a one port

circuit. Quantities associated with that port are designated

by subscript 1. Elements in the admittance matrix of the

entire rnicrostrip system have double numerical subscripts.

We use the usual variational expression [1, pp. 348-349]

r;
y=–

J/E. Jds

Since E or J is zero everywhere except at the port

subsection, we need only consider the port subsection. The

weighted integral of the electric field on that subsection is

equal to one by definition. The current on the subsection is

proportional to that same weighting function, the constant

of proportionality being Yll = ,fI. Thus, the denominator

of the above expression is just Y1l. The input current is the

input current density multiplied by the width of the input,

Aw, usually either Ax or Ay. Thus,

Y1= – (YllAw)2/Yll = – Y11(Aw)2.

In a like manner, the transfer admittance between any

two ports, say port a and port b, of an N-port circuit may

be determined by

The sign of a transfer admittance depends on circuit

geometry. This is because we define positive current in the

direction of the positive axis, while circuit theory defines

positive current as directed into the body of the multiport.

HI. - SOFTWARE IMPLEMENTATION

The analysis was implemented in a Pascal program on

an IBM-PC and later transported to a VAX computer.

Dynamic arrays (a data type available in Pascal) were used

extensively in developing a complex vector data type which

was used to vectorize the software.

On the IBM-PC a small circuit (a dozen subsections)

can be analyzed in a few minutes. Larger circuits (100

subsections) require several hours per frequency. The VAX

version of the analysis provides a factor of ten improve-
ment. The software has not been optimized.

A mouse-based microstrip geometry capture program

has also been written. A five-section low-pass filter was

subdivided into 611 subsections in less than an hour using

thk program. The output of the program (a text file

containing the coordinates of the center of each subsec-

tion) is used directly as input to the analysis program.
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Fig. 6. Measurements (dashed line) of a large open-circuited microstrip

stub agree well with calculations (solid line). suggesting that a high

level of accuracy has been realized.

Fig. 6 shows a sample analysis, a comparison between

measured and calculated data for a microstrip open cir-

cuited stub. The stub is 10.1 cm long and 2.54 cm wide.

The agreement between the measured and calculated data

is typical, Space does not permit more detailed results

here. The interested reader is referred to [4] and [6].

IV. CONCLUSIONS

A technique for the analysis of shielded

cuits has been presented. The technique

microstrip cir-

is a Galerkin

implementation of the method of moments and is closely

related to the spectral-domain approach. The analysis is a

complete time-harmonic electromagnetic analysis of micro-

strip.

The analysis may be used in the evaluation of individual

microstrip discontinuities or, with faster computers, in the

evaluation of entire microstrip circuits.

While the analysis is numericall:~ intensive, it is suffi-

ciently efficient that results for simple circuits can be

obtained in reasonable time even with a small personal

computer.
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